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By Arthur L. Jones and Alberta Alksne

SUMMARY

Within the limitations of linearized potential theory for super-

sonic flow, solutions have been obtained for the damping in roll of

triangular, trapezoidal, rectangular, and two swept-back plan forms.

The results indicate that as the aspect ratio is increased the

limiting value of the damping in roll for trapezoidal (with a finite,

fixed rake angle) and rectangular plan forms is equal to the value

for two-dimensional flow which is twice the limiting value for trian-

gular plan forms. For the swept--back plan forms having the Mach

cone and leading edge coincident or very nearly coincident, the

damping in roll even exceeded the value for two-dimen%lonal flow.

In addition, an investigation of the effect of rewersal of the

plan-form position relative to the stream direction was made for

the majority of the planforms considered and the results show

that this reversal had no effect on the value of the damping--in-

roll stability derivative.

INTRODUC TION

There are a number of methods available for determining

supersonic--flow load distributions on lifting surfaces by means of

linearized potential theory. Application of any of these methods
varies in detail and no individual method can be considered as being

best suited for use in obtaining solutions for arbitrary Mach-cone

plan--form configurations.

The relatively simple problem of determining the induced flow

field and the surface shape to support an arbitrarily prescribed

load distribution always can be solved using doublet distributions

and a surface integration. This procedure provides an explicit

expression of the doublet sheet potential. (For a detailed descrip-

tion see reference 1.) On the other hand, if the loading over a

wing is to be determined from a knowledge of the downwash distri-

bution required to make the streamlines conform to the shape of
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the lifting surface, the doublet distribution and surface integra-
tion method again can be applied directly, provided the wing has
so-called supersonic leading edges, trailing edges, and tips oI When
subsonic edges or tips are considered, however, the mathematical
development involves the solution of an integral equation in order
to get results comparable to those obtained by the relatively simple
surface integration used for wings with supersonic edges° The
solution of an integral equation is generally a rather long and
tedious process and can be circumvented for certain plan forms with
subsonic leading edges or tips by a method presented in reference 2o

In this investigation to determine the linearized--potential--
theory load distribution due to roll, only the surface integral
methods of references i and 2 have been used. Other methods that
have been applied successfully to obtain angle-of-attack loadings,
such as the conical flow and the doublet--line methods, are also
applicable.

The plan forms considered in this investigation are the follow_
ing: (i) triangular with subsonic leading edges and with supersonic
leading edges; (2) trapezoidal with all possible combinations of
raked in, raked out, subsonic or supersonic tips (fig. i); (3)
rectangular; and (4) two swept-back plan forms developed from the
triangular wings (fig° 2)_ Moreover, all but the swept--back plan
forms and the triangular plan form with subsonic leading edges were
analyzed with the stream direction reversed so that the leading edges
were interchanged with the trailing edges.

The load distributions due to rolling obtained for the wings
investigated were subsequently integrsted to determine the rolling
momentand the damping--in-roll stability derivatives. All results
have been presented in stability-derivative form.

x,y,z

U

W

SYMBOLS AND COEFFICIENTS

Cartesian coordinates

perturbation velocity along the positive X-axis

perturbation velocity parallel to Z-axis (positive downward)

IA supersonic edge is an edge for which the angle of inclination

from the plane of symmetry is greater than the Mach cone angle.

The inverse of this relationship defines a subsonic edge.
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V

b

or

S

A

P

q

AP

L

CI

P

C_p

M

5

m

e

E

K

free-stream velocity

span of wing measured normal to plane of sy_netry

root chord of wing

over-ell length of swept-back wing (See fig. 2,)

area of wing

aspect ratlo (_)

density in the free stream

free-stream dynamic pressure (_V 2)

pressure differential across wing surface, positive upward

rolling m_nent about X-axls

rolling_nement coefficient (q--S_)

rate of roll, radlans per second

dempin@-in-roll stability derivative (3(pb/2V))

free--stream Mach number

tip rake angle measured from line parallel to plane of

symmetry in plane of wing

tangent of 5

tan5

tan_

complete eliptic integral of the second kind with

modulus _

complete elliptic integral of the first kind with

modulus _

perturbation velocity potential
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The thin-airfoil-theory boundary condition for a rolling wing

is a linear spanwise variation of angle of attack which corresponds

to a linear spanwise distribution of the vertical induced velocity

The problem, therefore, is to find the load distribution that will

satisfy this co_dition within the wing boundaries and conform in all

other respects to a proper solution of the linearized differential

equation for supersonic flow. A detailed development and discussion

of the surface integral method for obtaining the load distribution

for a rolling wing can be found in reference i. The presentation of

the method in this report is merely an outline of the operations

involved in obtaining the load distribution from the known boundary

conditions.

The loading at any point is proportional to the perturbation

velocity u parallel to the longitudinal axis of the wing (the

X-axis in figs. i and 2). The following simple relationships from

linearized potential theory

m= W dz
U = _X ne

(i)

Wo

= 4u (2)
q V

can be used to obtain u and subsequently the load distribution in

terms of _P once the general expression for the vertical induced
q

velocity w required in equation (1) is known.

To convert the load distribution into rolling moment about the

X-axis the following integration must be performed:

L -F; AP Y dY dxwing q
q _plan form
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The stability derivative coefficient C_p is then

3C_ 2VL

22 qSbN
ev

The general expression for w must be known in the region

directly above the wing extending from the wing to the Mach cone

envelope. The procedures for obtainingthis expression are divided

into the two following categories for discussion.

Supersonic Leading Edges and Tips

An application of Green's theorem, discussed in reference i,

provides the means for determining a general expression for w if

w is specified in the plane of the wing over the area bounded by

the envelope of the Mach forecones stemming from the trailing

edges. The means used amounts to an integration over a doublet

sheet for which the strength is proportional to the specified values

of w on the X--Y plane. For the supersonic-edged plan forms, there-

fore, the loading solution can be obtained readily, since w is

equal to zero in the bounded area of the X-Y plane except on the

wing itself where w is equal to the prescribed boundary-condition
value.

Subsonic Leading Edges or Tips

If the plan form has a subsonic lealing edge or tips, the air

can be disturbed in the region between the foremost Math cone and

the wing surface. In this region, therefore, the specification of

w on the X-Y plane requires in general that an integral equation

must be solved to obtain the general expression for w. Reference 2,

however, provides an alternative procedure for certain types of sub-

sonic leading-edge or tip plan forms whereby the solution of an

integral equation may be avoided. The solutions for these plan forms

then are .obtained by a process of integration similar to the

procedure used for plan forms with supersonic tips and leading edges.

DISCUSSION OF RESULTS

The stability-derivative results are divided into the trian-

gular plan form, the trapezoidal and rectangular plan form, and the
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swept-back plan-form categories for discussion. Expressions for the
stability-derivative coefficients are given, Curves showing the
variation of these coefficients with aspect ratio are presented in
figures 3, 4, andS. Expressions for the loading function AP/q
are given in Appendix A.

Triangular Plan Forms

supersonic leading edges is

and for the triangular wing with subsonic leading edges it is

where E is the complete elliptic integral of the second kind with

modulus _, K is the complete elliptic integral of the first

kind with modulus l_T_-_, and e is a parameter that indicates the

relative positions of the Mach cone and leading edge. For the sub--

sonic leading-edge plan forms the value of e is less than 1 and

the lead_ug edge i8 swept behind the Mach cone. The variation of

_C_p with the aspect ratio parameter 8A is presented in figure 3
for-both types of triangular plan forms.

Trapezoidal and Rectangular Plan Forms

There are two general types of trapezoidal plan forms, defined

by having the tip either raked in or raked out from the leading

edge. The tip in either case may be classified as subsonic or super-

sonic depending on whether the Mach-cone angle is greater or less

than the rake angle. Thus there are f0urbasic Mach-cone plan--form

2Triangular plan forms with the point forward will be referred to

as "triangular plan forms" in contrast to the term "inverted

triangular plan forms" which will be used in reference to base

forward triangles. ,
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configurations. For three of these configurations the possibility

of the overlapping of the Math cones from the tips provides a

secondary configuration for which it is possible to predict the

loading distribution and the damping due to roll. All the trape-

zoidal plan forms considered are shown in figure i.

The expression for _C_p for the trapezoidalplan forms with
supersonic tips (0_ i)

was found to apply regardless of whether the tip was raked in, as

on plan form a, or raked out, as on plan form b. Since for a

given e and a Eiven span the plan forms a and b are effectively
the same plan form with the stream direction reversed, it is evident

that C_p is independent of the direction of the stream, provided
the stream remains parallel to the plane of symmetry of the plan

form. The same conclusion applies to the subsonic--tipped trapezoidal

and rectangular plan forms (e<l) and the expression for _C_p for

this type is

_C_P = lZ_b [8-12--_ (I+s)_b +4c-s_ (i +4e +3e2)_b_

+_(i--3e- 9e2-- 5es)]

This property of reversibility appears to be rather remarkable
in view of the fact that the load distribution on a given plan form

is changed markedly by reversing the stream direction. This result

also is a direct analogue to von _'s independence theorem

(reference 3) for drag and, although the drag theorem was developed

analytically to apply to all plan forms, the independence of the

lift and roll characteristics as yet merely has been indicated by

calculation on a limited number of plan forms.

It is obvious that the trapezoidal plan form can be reduced in

span till either a triangular or an inverted triangular plan form

is obtained. Thus it was possible to check on the reversibility

property of the supersonic-lea&In@edge triangles quite readily.

It was not possible in the present investigation, however, to reduce

the subsonic-tipped trapezoids to triangles corresponding to
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inverted triangular wings in order to obtain a check on the inde-
pendence theorem for these plan forms. As 6A becomesless than
(1 + e) 2 the Mach cone from one tip is reflected off the other tip
and the load distribution behind these reflected Mach lines is not
readily determined. From figure 3 it is apparent that, for values
of _A less than (1 + e) 2, the variation of _C_p with _A
must reduce in slope as the trapezoid reduces to a triangle
(6A = 4e) in order to yield the value of _Clp corresponding to

the value of 6C_p for the triangular plan form.

It can be seen in figure 3 that as the aspect ratio increases
the values of _C_p for the trapezoidal and rectangular plan forms2
approach the value for two-dimensional flow -_; whereas the

1 when the aspect ratio
triangular plan forms reach a value Of -

parameter _A becomes equal to or greater than 4. By letting the
tangent of the rake angle approach infinity as the span approaches
infinity, the supersonic-tipped trapezoidal plan forms can be made
to approach the configuration of an inverted triangular plan form.
Since for a triangular plan form

A=4m

the limiting value of _C_p for this case becomes (using the expres-

sion for the supersonic--tipped trapezoidal plan forms)

= - i I -

3 \ /

2< Q l_CZp : --_ i - - 3

and thus checks with the value for the triangular plan form with

supersonic edges.

Swept-Back Plan Forms

The two swept-back plan forms shown in figure 2 are easily

developed from the triangular wings of supersonic and subsonic lead-

ing edges by cutting out a small triangular area from the rear of the

triangular plan forms. Other swept-back plan-form configurations
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are also amenable to calculation but only the results for the two
plan forms selected are included in this report for purposes of
comparison. The expression for the damping in roll of the swept-back
plan form with subsonic leading edges is

_(Lz-La) 2V _(Lz-L2) [_/

where Lz is the rolling moment for the triangular wing as a whole

and La is the rolling moment of the small triangle cut out to

provide a swept-back plan form. The expressions for LI and Le

are given in Appendix B.

For the swept-back plan form with supersonic leading edges the

damping--in-roll coefficient is

_(Ls--L4) 2V

qSb pb

8(Ls--L4)2V

- -Cr2 3 qpb2

where Ls is the rolling moment for the triangular wing as a whole

and L4 is the rolling moment of the small triangle cut out to

provide a swept--back plan form. The expressions for Ls and L4

are given in Appendix B.

From figure 5 it can be seen that both of these swept-back

plan forms provided more damping in roll than their related trian-

gular plan forms of the same span and Mach-cone leading-edge config-

uration. This result was anticipated, since the load distributions

for the triangular plan forms in roll reveal that the magnitude of
the load increases as the leading edges are approached. At values of

e in the immediate vicinity of l, the swept-back plan forms provide

greater damping in roll than the trapezoidal or rectangular plan forms

for comparable values of _A. Moreover, even the value of 8C_p

for two-<limensional flow - _ is exceeded in magnitude at _A's of

l0 or higher by the swept-back plan forms of the type shown on which

the Mach cone and leading edge are very nearly coincident (e very

nearly equal to 1).
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CONCLUDING

The results of this investigation based on linearized potential
theory indicate that for values of BA greater than 4 the trapezoidal
and rectangular plan forms provide values of --_CZp greater than
the limiting value _ for the triangular plan forms. The limiting

value of -_CZp for the rectangular and trapezoidal (with a finite,
fixed rake angle) plan forms is _ which corresponds to the value
for a constant-chord plan form of Jinfinite span. The value of

for -$CZp is also exceeded by someof the swept-back plan forms.
The swept-back plan forms investigated, moreover, showed that for
configurations on which the Mach cone and the leading edge are very
nearly coincident the value of -_CZp for two-dlmensional flow

is exceeded.
3

All but the swept-back plan forms and the triangular plan form

with subsonic leading edges were investigated with the leading edges

and trailing edges reversed relative to the stream direction. For

a given plan form at a given Mach number it was found that this

reversal, which changed completely the distribution of the load,

had no effect on the value of _CZp.

Ames Aeronautical Laboratory,

National Advisory Committee for Aeronautics,

Moffett Field, Calif.

APPENDIX A

The expressions for the load distribution over the triangular plan
forms are as follows:

(Supersonic leading edges) Region within the Mach cone

____= 4_pp _m(e2y-mXLIsin_iIe2y-mx ]
q v o(mx-y)

 (e l)3/2
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Region between Mach cone and leading edge

AP
q v(e2-1) 3/_

(Subsonic leading edges)

ZkP 4p m2yx

-4- = Vjm2x2-y2 F2-@2 E-LI_492 _e2 K

The expressions for the 10ad distributions for the trapezoidal

plan forms shown in figure i and for the rectangular plan form are

as follows:

e __>i

Plan form a,

q _v

Plan form b,

BA)_ 4

_A_4(e+l)2/(8+2)

Region i

 _=4py
q _v

Region 2

Z_P= 4p_[m(e 2 y-rex--_+ mCr) ] sin- I [e2(Y - _+ mcr)-mx ]

q VLL' _(%2-1_ sT2 _yT_-Cr)

m(eey-mx-- b + mCr) .- my__sin--i + --

2(02-i) s/2 _O mx 20

+ m_2xm-em(Y--_ +mcr) 2 }

Re gion 3

2_P 4p _m({}2y-mx--b + mCr)
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Plan form c,

Region 1

Region 2

Region 3

Region 4

4 < _A <4(e+l)2/(e+2)

&P same as for region 1 on plan form b
q

AP same as for region 2 on plan form b
q

2_P same as for region 3 on plan form b
q

AP ,/Ap_ //ZkP_ 4pj im(-eSy-mz-- 11 +=CF )] = i_,
Y = \F]2- \-qI i- £-[ L .(e=-z)=/= L e(]l_-y+ I -Cr) J

m(-e2y-mx- I + mcr)

2(e2-1)s/m
=y [e(-y- b +=Or)+ _ sin-1 2 _Ymx j 2e

m/m2x2-e2(-y - 1_ +mCr)2 ]

+ ,,e=(e=_l)

e <i

Plan form d,

Region i

_, >4/(2.-e)
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Region 2

_p 4p [ y 26(y-_)+x+ex-- = -- -- COS--I

q _v _ x(1-e)

_(i-_) J

Plan form e, (l+e) 2 <_3A <4/(2-49)

Region i $_ same as for region I on plan form d.

Region 2 ZiP same as for region 2 on plan form d.
q

Region 3

_-= \q/2 - _-/i + _V oo_-_L x(1-e) ....J

+ _ _(1-e)
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Plan form f, _A>4(e+l)2/(e+2)

Region 1

Region 2

_P = 4p_fy c°s- Ir2(_y-6_+ecr)+x-_x_
x(l+e)L ]

2 _x+_Y-_ +eCr)(ex-_y+_ -_Cr)

IX]-+e)

+

P]_anform g, (z+e)2 <__,A<4(1+e)2/(e+2)

Region i &P same as for region i on plan form f.
q

Region 2 _P same as for region 2 on plan form f.
q
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Region 3

_- = k, -K, Ti_ + _ c°s-_ L x(i+e) .]

2 J(x--#y-_ +eCr)(ex+Gy+_ _ -_Cr)

+ _(l+e)

+ [6@m (_Y-X) +2e (x-Gy+4ecr-4# _) ]
3_( l+e )2 J

e = 0 (rectangular) _A E1

&-_P same as for trapezoidal plan form e with e = O.
q

APPENDIX B

The expressions for the rolling moments LI, L2, Ls, and L4

for the swept-back plan forms are:

L 1 =
-pqb_

/2._.e2 e2-32V kl--_ E 1_02 K
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-8pqm 2
L2 = 2 2 2- .....

In--1 Cr-Z (1-e 2 ) _ sin--1 e -
cr_ 2_2(z-e2 ) 3

[3_ s--5_mcr+Z Cr+Cr3-O 2(97,S--13Z2Cr+ 72c r_+lOcrS )

+ 04(9ZS-llZ2cr+6ZCr2-6CrS)-3ee(zs-Z2cr)]

_ c_e3(2e2+13)
24132(1...e2)s + --_ sin-l\ Ze /

-2pqZ4m*
Ls = 3VO
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"_ = _(e-1)_i_
,(82--2)1 sin- 1 1 (3e2+2)(e2-J+)
"i2 j _ + 36(e2-z)s/a-

+ [(e2+l)(_-_r)3
3Cr_

(e2-2)] sln-_ e2(z-c_) +z
24 e(2_-Cr)

(Oa_l)(Z_Cr) 8 (_--Cr) 2
+ - 3CrS + 2Cr2

( 3e2+2 ) ] e2( Z-c r )--Z

12(e__i)2_ sln-1 ecr

+

O r 9Or _

(Z-Cr) ( 3e2+2 )
+

36c r

Z4 (_ e2(Z-Cr) 3+

3Z 3

(Z-Cr) 2

2Z _ (2e2-3)] e2(Z-Cr)+_6 sin--1 e(2Z-Cr)

[e2(Z-Cr) a (Z-cr) 2
+ L _ 2z_ (2e_--3)] sin-1 e2( Z--c r)-z

ec r

+ _(e2--l) 8/2 _ (?'-Cr) _ _£Z_-e_'(Z-Cr )2

3Z23e

[ ]
_ 2(ea-1)s/2 cos-Z

3e Z
(_-Cr)4_e m

+

3
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